CORRECTION AND ADDITION TO SOME THEOREMS CONCERNING PARTITIONS(1)

ву EMIL GROSSWALD

Theorem 2 of the above mentioned paper is valid only provided that the set $\{a\}$ of smallest positive residues does not consist of the single element a=q. Indeed, if it is required that all summands of a partition be divisible by the prime q, then, clearly, $p_n(q) = p_n(q, l) = 0$ for $n \not\equiv 0 \pmod{q}$, while, for $n = qn_1, p_{qn_1} = p_{n_1}(1)$ and $p_{qn_1} = p_{n_1}(1, l)$. Here $p_{n_1}(1)$ and $p_{n_1}(1, l)$ are the corresponding partitions without congruence restrictions; they may be obtained from the formulae of Theorem 2, by setting formally m=q=1. $p_n(1)$ is, of course, the number of unrestricted partitions and is well-known (see [2] and [10]). It is easy to see that this is actually the only case in which the statement of Theorem 2 needs a modification. Indeed, Theorem 2 is an immediate consequence of the lemma. The proof that conditions (b) and (c) of the lemma hold for the generating functions F(x) and H(x) does not depend on the set $\{a\}$. But the verification of condition (a) makes essential use of the fact that (see text on top of p. 124 and on p. 120, after (11)) $L/k^2 \le t\Lambda$, with $t = \max_{a} B/q^2 = 1 - 6(q-1)/q^2 < 1$. In case k = q = a, however, $A = B = q^2$ and, if m=1, $\Lambda=\pi^2/6q$, $L=\pi^2q/6$ so that $L/k^2=L/q^2=\Lambda>t\Lambda$. This simply reflects the fact, evident from $F_0(x) = \prod_{\nu=1}^{\infty} (1-x^{q\nu})^{-1}$, that if $x = \exp \{\log r + 2\pi i h/q\}$, then $|F_0(x)|$ takes on the same value, for every integer h; the situation for similar. If, however, m > 1, then $L = (\pi^2/6q) \sum_{a \in \{a\}} B$ $\leq (\pi^2/6q)[(m-1)tq^2+q^2] = \pi^2 mqt_1/6$, with $t_1 = [(m-1)t+1]/m < 1$ and the argument of the test goes through with $t_1 < 1$ instead of t.

University of Pennsylvania, Philadelphia, Pennsylvania

Received by the editors November 25, 1959.

⁽¹⁾ Some theorems concerning partitions, Trans. Amer. Math. Soc. vol. 89 (1958) pp. 113-128.